Integrated Communication and Sensing: Challenges, Current Trends and Future Directions

Wireless Knowledge Summit 2022

Lakshmi Narasimhan

Outline

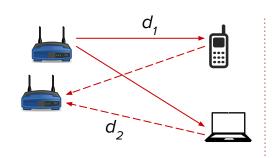
- 1. Sensing
- 2. Challenges
- 3. Current Trends
 - a. WiFi
 - b. Cellular
- 4. Future Directions

Sensing

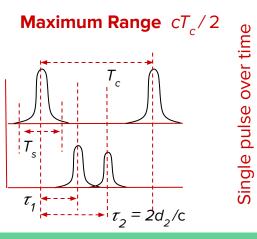
Overview Uses Cases Terminologies Technologies Summary

Sensing

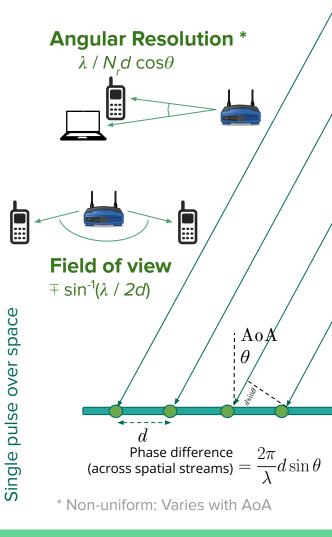
- Any kind of detection, estimation and tracking
- Parametric and non-parametric
- Key parameters variation in propagation channel a. CSI
 - b. AoA & DoA
- ICaS One radio to rule them all


Uses cases

- Spectrum sharing and efficient utilization
- Typical
 - Localization and positioning navigation, velocity estimation, GPS-denied area
 - Occupancy detection presence/count detection, appliance control
 - Motion tracking beam tracking, camera focus, surveillance


• Upcoming

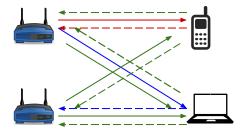
- Environment mapping IoT/Robot/car/SLAM/digital twins/V2X
- Gesture recognition Appliance control
- Health care Fall detection, vitals monitoring


Terminologies

Range Resolution $cT_s/2 = c/2B_s$

Carrier frequency	∞ ∞	1 / Vmax 1 / Vres 1 / Ares * FoV		
Bandwidth	œ	1 / Rres		
Pulsing interval	œ	Rmax 1 / Vres 1 / Vmax		
# of Rx antennas	œ	1 / Ares *		
Phase difference of two pulses over time: $2\pi f_c(\tau_{T2} - \tau_{T1}) = 4\pi (d_{T2} - d_{T1})/\lambda$				
Dividing by T_c , we get: $4\pi v/\lambda$				
For <i>N</i> discrete samples in T_c , Velocity Resolution $\lambda/2NT_c$				
Maximum Velocity $\pm \lambda/4T_c$				

Examples


Fc (in GHz)	Resolvable velocity	Maximum velocity (±)	Applicable in
~ 2.4	25 kmph	1350 kmph	802.11, 4G, 5G
5	~ 10 kmph	~ 810 kmph	802.11ac, 4G, 5G
28	~ 2.5 kmph	~ 144 kmph	5G FR2
60	~ 1 kmph	~ 68 kmph	802.11ad

Fc	Angular Resolution	Rx Antennas
2.4 GHz	15°	4
5 GHz	7 °	4
28 GHz	0.5°	64

Bandwidth (in MHz)	Resolvable object size	Applicable in		
20	7.5 m	802.11n, 4G		
80	1.875 m	802.11ac, 5G		
400	37.5 cm	5G FR2		
2000	7.5 cm	802.11ad		

Technologies

- Monostatic, bi-static, multi-static
- Time or frequency domain processing
- Pulse/Chirp/OFDM radars
 Analog (pulse/chirp) & Digital (OFDM)
- Clutter removal (stationary background)
- Delay-Doppler processing (FFT along time not along delay)
- Beamforming and tracking

Summary of Sensing

- Different uses cases
- Parameters: Resolution & max of range, speed & AoA
- Radar types and waveforms
- <u>Assumptions</u>:
 - a. Synchronization
 - b. Homogeneous reflectivity
 - c. Object size > wavelength
 - d. Clutter is stationary

Challenges

Systems Algorithms Hardware Summary

Systems

- Scheduling
 - Effect of URLLC scheduling protocols on ICaS?
- Full CSI time/space/frequency
- Minimizing feedback overhead in uplink
- Modeling non-homogenous channels
- Guard interval placements
- Legacy support

Algorithms

- Signal processing for non-stationary geometries
 Need retraining and robust model learning
- Dense deployments pilot/pulse contamination
 Need central coordination and orchestration
- Interference cancellation
 - Need sophisticated processing at UE
- Data fusion
 - Data from past: low-memory-algorithms for tracking
 - Fuse echoes from multiple targets and sources

Hardware

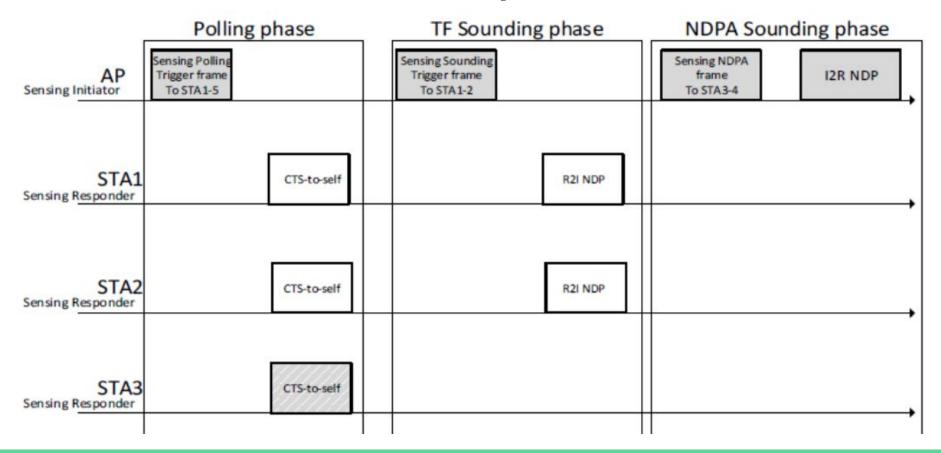
- Multi-band antennas *aperture size* ∝ *SNR* ∝ *clutter reduction*
- Non-linear, compact phased arrays *beam scanning*
- ADC with large number of RF chains *angular resolution*
- Fast switches *frequency/space multiplexing*
- High frequency PLL sensing resolution is phase sensitive
- Full duplex *self interference cancellation*

Summary of Challenges

- Optimal scheduling and synchronization techniques
- Minimizing time/space/frequency CSI/feedback
- Minimizing/cancelling interferences
 From self and neighbors
- Robust channel modeling/learning/tracking
- Sensitive PLL for high frequencies

Current Trends

IEEE 802.11bf 5G/6G


IEEE 802.11bf

- An amendment that enables devices to
 - Request sensing
 - Transmit sensing packets (NDP) and feedback
 - MAC interface to request/retrieve sensing measurements
- Measurement processing is left to OEM
- Focus: Directional Multi Gigabit (DMG)
 - MAC: WiGig and sub-7 GHz bands PHY: Only WiGig
 - MAC: Scheduling, initiating and responding protocols
 - PHY: CSI quantization/grouping, power control, hi-BW NDP format
- (E)DMG: Multiple beam/burst allowed for 3D imaging

IEEE 802.11bf (contd)

- Sensing session (initiated by some STA)
 - Measurement setup (STAs agree on roles, attributes and reports):
 Setup ID
 - Measurement instance (transmit and receive NDPs): Measurement ID
 - Setup termination
- Measurement report sharing (optional e.g., when CSI changes)
- Session termination
- AP coordinated: X-static
- Client sensing: Bi-static; multi-static enabled through proxy

IEEE 802.11bf (example)

Summary

WLAN sensing Sub-7GHz Sensing DMG sensing (60GHz) Monostatic DMG sensing procedure Sensing instance variants Sensing procedure DMG sensing types TX/RX = Target DMG sensing session setup Bistatic TB sensing Sensing session setup Monostatic TX RX measurement instance OTarget Polling phase Bistatic Sensing measurement DMG measurement setup Multistatic setup TX RXI NDPA sounding phase RX2 Target Multistatic DMG sensing burst TF sounding phase Sensing measurement Monostatic with coordination DMG sensing instance instance Monostatic sensing with TX/RX TX/RX Reporting phase coordination O Target Threshold-based Sensing measurement DMG sensing measurement Bistatic with coordination Bistatic reporting phase termination termination RXI sensing with coordination RX2 Target DMG sensing session Sensing session Non-TB sensing Passive sensing Passive sensing termination TX Beacon RX termination measurement instance OTarget Sensing by proxy Waveform/Sequence design Feedback types Channel modeling Security Quantization TCIR and and Ambiguity R-D-A DDHC-Ray-tracing-Other Other CSI Target CIR Other (TBD) privacy function compression based based map

Source: R. Du et al, "An Overview on IEEE 802.11bf: WLAN Sensing", arXiv, 2022.

WiFi Sensing (example)

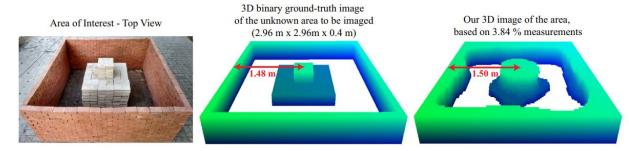


Figure 10: (left) The area of interest for the two-cube scenario, (middle) 3D binary ground-truth image of the unknown area to be imaged, which has the dimensions of $2.96 \text{ m} \times 2.96 \text{ m} \times 0.4 \text{ m}$, and (right) the reconstructed 3D binary image using our proposed framework.

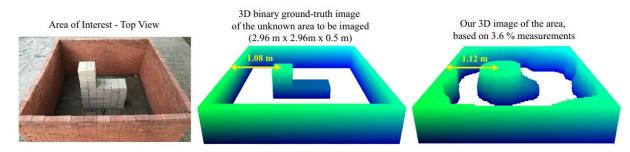
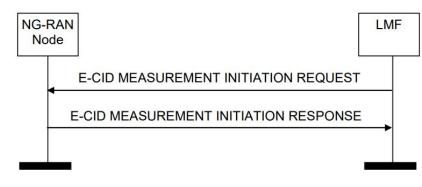
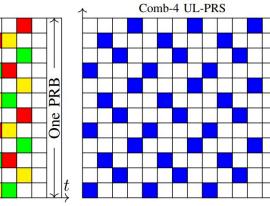


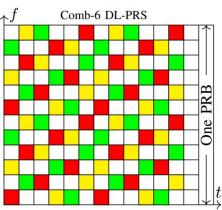
Figure 11: (left) The area of interest for the L-shape scenario, (middle) 3D binary ground-truth image of the unknown area to be imaged, which has the dimensions of $2.96 \text{ m} \times 2.96 \text{ m} \times 0.5 \text{ m}$, and (right) the reconstructed 3D binary image using our proposed framework.

Source: C. R. Karanam & Y. Mostofi, "3D Through-Wall Imaging with Unmanned Aerial Vehicles Using WiFi", IEEE IPSN 2017.

5G/6G


- GPS meets most needs; focus on V2X & GPS-denied areas
- 3GPP Rel 16 & 17: Positioning using AoA, TDoA, RTT, RSRP
- Location management function (LMF) in core central unit
- New protocol: NR positioning protocol A
- Legacy support: LMF to LTE positioning protocol (LPP)
- RB/Beam multiplexing between data and positioning
- Low correlation pilot sequences reused as radar pulses


NR Positioning Protocol A (NRPPa)


- E-CID Measurement Initiation Report Termination
 Similarly, TDOA/TRP Information Transfer
- Positioning: PRS (hi-BW) in DL, SRS (low-BW) in UL
- PRS: 24 to 276 RBs, repetition period: 4 to 10240 ms
 RBs in comb pattern, QPSK, Gold sequence, beam sweep
- SRS: 1-12 symbols, ZC sequence
- Comb pattern: Orthogonal in shift, shift and allot to multiple BS, interference avoidance and suppression

Summary

Source: 3GPP Rel 16 document

Positioning service level	Absolute(A) or Relative(R) positioning	Accuracy (95 % confidence level)	Positioning	Position	Coverage, environment of use and UE velocity			
		Horizontal Accuracy Vertical Accuracy (note 1)	service availability	ing service latency	5G positioning	5G enhanced <mark>positioning</mark> service area (note 2)		
		Horiz Accu	Vert Accu (not			service area	Outdoor and tunnels	Indoor
1	A	10 m	3 m	95 %	1 s	Indoor - up to 30 km/h Outdoor (rural and urban) up to 250 km/h	NA	Indoor - up to 30 km/h
2	A	3 m	3 m	99 %	1 s	Outdoor (rural and urban) up to 500 km/h for trains and up to 250 km/h for other vehicles	Outdoor (dense urban) up to 60 km/h Along roads up to 250 km/h and along railways up to 500 km/h	Indoor - up to 30 km/h
3	A	1 m	2 m	99 %	1 s	Outdoor (rural and urban) up to 500 km/h for trains and up to 250 km/h for other vehicles	Outdoor (dense urban) up to 60 km/h Along roads up to 250 km/h and along railways up to 500 km/h	Indoor - up to 30 km/h
4	A	1 m	2 m	99,9 %	15 ms	NA	NA	Indoor - up to 30 km/h
5	A	0,3 m	2 m	99 %	1 s	Outdoor (rural) up to 250 km/h	Outdoor (dense urban) up to 60 km/h Along roads and along railways up to 250 km/h	Indoor - up to 30 km/h
6	A	0,3 m	2 m	99,9 %	10 ms	NA	Outdoor (dense urban) up to 60 km/h	Indoor - up to 30 km/h
7	R	0,2 m	0,2 m	99 %	1 s	Indoor and outdoor (rural, urban, dense urban) up to 30 km/h Relative positioning is between two UEs within 10 m of each other or between one UE and 5G positioning nodes within 10 m of each other (note 3)		

Future

Waveforms Joint & Distributed Algorithms AI/ML **Opinions & Summary**

Waveforms

• Need: Low PAPR, high spectral efficiency, multiple access

• OTFS

- a. High mobility support b. Embedded Doppler processing
- c. Multiple access similar to OFDM

• Single carrier

a. Improved capacity

MC-CDMA - NOMA

- a. Occupy full bandwidth
- c. Simple multiplexing

b. Suitable for CRAN, distributed ICaS

b. Suitable for less dense rural areas

ł

Academic

Joint & Distributed Algorithms

- Joint: Same signal for data and sensing; e.g., cyclic prefix
 - Distributed:
 - CRAN: centralized data fusion, position broadcasting
 - **CoMP**, coordinated MIMO, interference avoidance/alignment
 - RIS: Holographic MIMO
 - Modify channel properties to enhance performance
 - Cognitive ICaS: Dynamic spectrum sharing and allocation
 - Compressed sensing: Exploiting spatial geometry sparsity

ł

Academic

AI/ML

Implementation

ł

Academic

- PCA, feature selection/identification for detection
- **Deep learning:** device non-linearities, channel variations, temporal and spatial traits of propagation environment
 - Learn model from *a lot* of data (offline)
 - Continuously update model (online)
 - Neural networks for system inversion/deconvolution
 - RF fingerprinting to identify/predict devices and track
- Learn waveforms, schedules, resource allocation, precoders
- Distributed/federated learning for multistatic sensing
- Data driven sensing: Learn from past data

Summary & Opinions

- Immediate need: Waveforms and scheduling algos
- Future technologies to improve capacity and accuracy
 ICaS without any multiplexing
- OEM intelligence: Fusion algorithms and ML models
- Ongoing: 802.11bf, EU-OTFS-RADCOM, Hexa-X
- 3GPP playing catch-up
- Privacy concerns
- THz: hardware, optics, range, 3D-imaging

Questions 🛜